An extension of Morishima’s nonlinear Perron-Frobenius theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Nonlinear Perron-frobenius Theorem∗

We establish a stochastic nonlinear analogue of the PerronFrobenius theorem on eigenvalues and eigenvectors of positive matrices. The result is formulated in terms of an automorphism T of a probability space (Ω,F , P ) and a random mapping D(ω, ·) : R+ → R+. Under assumptions of monotonicity and homogeneity of D(ω, ·), we prove the existence of scalar and vector measurable functions α(ω) > 0 an...

متن کامل

Perron-Frobenius Theorem for Spectral Radius Analysis

The spectral radius of a matrix A is the maximum norm of all eigenvalues of A. In previous work we already formalized that for a complex matrix A, the values in A grow polynomially in n if and only if the spectral radius is at most one. One problem with the above characterization is the determination of all complex eigenvalues. In case A contains only non-negative real values, a simplification ...

متن کامل

Generalized Perron-Frobenius Theorem for Nonsquare Matrices

The celebrated Perron–Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. H...

متن کامل

Perron–frobenius Theorem for Nonnegative Tensors

We generalize the Perron–Frobenius Theorem for nonnegative matrices to the class of nonnegative tensors.

متن کامل

Extension of the Perron-frobenius Theorem: 1 to Homogeneous from Linear

This paper deals with homogeneous cooperative sys-terns, a class of positive systems. It is shown that they admit a fairly simple asymptotic behavior, thereby generalizing the well-known Perron-Frobenius theorem from linear to homogeneous systems. As a corollary a simple criterion for global asymptotic stability is established. Then these systems are subject to constant inputs and we prove that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1983

ISSN: 2156-2261

DOI: 10.1215/kjm/1250521436